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Diffusion equations of impurities with ionization and recombination source terms are 
solved numerically by the splitting and fractional-step method for noncommutative operat- 
ors. Diffusion equations without source terms and rate equations are solved successively 
and the very small time step for calculation determined by fast ionization processes can 
be avoided by solving the rate equation as an eigenvalue problem. The time step is de- 
termined by the diffusion process and it is possible to follow the time evolution of im- 
purities for a long time. The present method is second-order accurate in At. 

1. INTRODUCTION 

Small amounts of impurity ions emitted from the wall and limiter play an important 
role in thermonuclear devices such as Tokamaks. It is well known that impurities 
enhance the radiation losses of a plasma and have a tendency to accumulate in the 
center of plasma [I] so that they have a serious effect on the plasma confinement and 
heating. However, impurity behavior is a complicated process which includes an 
atomic process of ionization and recombination as well as a diffusion process. (See 
Eq. (l).) 

The present paper is devoted to a new method for solving the diffusion equation 
of impurities such as carbon, oxygen, iron, molybdenum, etc. The solution of imputriy 
diffusion equations is a difficult numerical problem. Ionization and recombination 
terms contain various characteristic times which depend strongly on the electron 
temperature and vary on a wide range. Some of the characteristic times become 
comparable with those of diffusion. Therefore the diffusion and atomic terms should 
be treated simultaneously and the time step required for computation must be chosen 
to be smaller than the fastest ionization characteristic time which is much smaller 

0021-9991/78/0261-0080$02.00/0 
Copyright Q 1978 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

80 



METHOD TO SOLVE IMPURITY DIFFUSION EQUATION 81 

than that of diffusion.Previous work on impurity behavior inTokamaks has beenbased 
on the diffusion equation for impurities [2, 31. However, it seems that these methods 
for solving the equation have not yet been satisfactory for treating the diffusion and 
atomic processes simultaneously and consistently. 

The present numerical technique employs a splitting and fractional-step method for 
noncommutative operators [4, 51. The impurity diffusion equation is split into two 
kinds of equations-a diffusion equation without source terms and a rate equation. 
The diffusion equation is solved by the usual methods such as the Crank-Nicholson 
scheme and the recurrence relation [6]. The rate equation, which is linear, is treated 
as an eigenvalue problem in order to remove the very small time step restricted by 
fast ionization processes. It is possible to follow the impurity evolution by a larger 
time step At which can be determined by the diffusion characteristic time. The present 
method is indeed second-order accurate in At. 

2. NUMERICAL METHOD 

In the present section, we consider the diffusion equation given as follows: 

5/l, 
-= 

i-t 
- ; g (rr,) +;- ne(q-,n~-l - n!J&) - n&?&7k - /?knk.,.,), 

Ii = 1, 2,. . , K, a” = /I, = OIK = pK = 0, (1) 

where IZ,; is number density of the imputiry ions with (k - 1) electric charge (s), r, is 
the particle flux of impurities with k, n, is the electron density, and ak and p, are the 
rate coefficients for ionization from state k to state k + 1 and for recombination 
from state k + 1 to state k. These rate coefficients depend strongly on the electron 
temperature, T, , which varies widely over space. In this section, we assume the linear 
form of I’, , for which concrete expressions are omitted here. The spatial difference 
equation for Eq. (I) has the form of 

dujdt = Au + Bu + a, (2) 

with the boundary condition Pn,/iir = 0 at r = 0. In Eq. (2), u is the vector consisting 
of (II~,)~‘s, where k = 1, 2 ,..., K and j = 2, 3 ,..., J - 1, and a is a vector consisting 
of (nJJ’s which are boundary values at the outermost mesh point J. A and B are 
matrices representing the diffusion term and the atomic process, respectively. The 
explicit expressions of A, B, and a are not given here since they are not necessary for 
the discussion below. lt should be noted that A and B do not commute because n, 
depends on r, and LQ and /3, depend strongly on T, . 

We assume that A, B, and a are constant in time during a small time step At and 
that u0 = u (t = 0) is known. The solution to Eq. (2) after At is 

u(At) = &4+Bldt {u, + (A + B)-la) - (A + B)-*a. (3) 
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We consider the approximation of Eq. (3) as follows: 

u(At) = e+BAt{eAAt(e@At u. + A-la) - A-la}. (4) 

By Taylor expansions, we know that Eq. (4) approximates Eq. (3), with an error that is 
third order in At. According to Eq. (4), we can obtain solutions successively as follows: 

First step. Solve the rate equations: 

dq./dt = ne(a~~-ln]~-l - Wk> - %&Ll% - PA!+Jr k = 1, 2,. ., K, (5) 

on all mesh points under the initial condition u0 . The solutions to Eq. (5) at time 
At/2 give u, = e+R%,, . Because u1 is the solution at At/2 of 

dujdt = Bu, (6) 

solving Eq. (6) corresponds to solving rate equations on all mesh points since Eq. (5) 
contains no spatial differentiation. 

Second step. Solve the diffusion equations without source terms: 

k = 1, 2,.. ., K, 

under the initial condition u1 . The solutions to Eq. (7) at time At give up = 
eAdt(ul + APa) - A-la. Because u2 is the solution at At of 

dujdt = Au + a, (8) 

solving Eq. (8) corresponds to solving the diffusion equation since Eq. (8) is the 
difference form of Eq. (7). 

Third step. Solve the rate equations on all mesh points under the initial condition 
u2 . The solutions at time At/2 give uQ = e*B*h2 . Then, us is the approximate solution 
to Eq. (1) of second-order accuracy in At. 

Thus, one can replace a complicated problem given by Eq. (1) by a succession of 
simpler ones-diffusion equations and rate equations. This corresponds to the 
splitting and fractional-step method for noncommutative operators which has been 
suggested by Knorr [5]. Actually, the diffusion equation at the second step is solved 
numerically by, say, a Crank-Nicholson scheme and a recurrence relation [6]. On 
the other hand, the rate equation at the first and third steps should be solved so 
as to remove very short time step determined by the ionization process. We treat 
the rate equation as an eigenvalue problem. This method avoids the computational 
time step and furthermore has a merit that we do not need to solve the eigenvalue 
equation of Eq. (5) again at the third step once we obtain the eigenvalues and eigen- 
vectors at the first step which are held constant during At. 

Another form of Eq. (3) by the splitting and fractional-step method is given by 

u(At) == e+A*t[eB*t(eiA*t(U,, + A-la) - A-la) + A-la] - A-1-a. (9) 
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which produces the approximation to Eq. (3) of second-order accuracy in dl again. 
The algorithm in this case is as follows. First, solve diffusion equation (7) under the 
initial condition II” and obtain solutions at time At/z; second, solve rate equations 
(5) on all mesh points under the initial condition of the first step solution and obtain 
solutions at time dt; and third, solve the diffusion equation again and obtain solutions 
at time At/2 under the initial condition of the second solutions. 

The former case based on Eq. (4) requires solving the diffusion equation once and 
the eigenvalue equation once on every mesh point, while the latter based on Eq. (9) 
needs to solve the diffusion equation twice as well as to solve the eigenvalue equation 
once on every mesh point. However, the former must store eigenvalues and eigen- 
vectors on each mesh point, which requires a large memory if we treat heavy elements 
such as molybdenum (Z = 42) or tungsten (Z - 74). 

3. NUMERICAL EXAMPLE 

In this section we present a numerical example. The purpose of this section is not to 
investigate impurity behavior in a Tokamak plasma in detail but to test the new method 
described in the preceding section; therefore we restrict ourselves to the simplest 
case for particle flux and rate coefficients. In the Pfirsch-Schltiter regime in a Tokamak 
plasma, the simplest form for particle flux has the form [7] 

Dk = (1 + 2q2) 
4(2n~~$/’ c2Zi2ezni In (1 - 3T?12B 2 3 

z 0 
(11) 

where Zi , ni , mi , and Ti are electric charge number, density, mass, and temperature 
of the plasma ions, respectively; A is the Coulomb logarithm; B, is the magnetic 
field strength; and q is the safety factor. The second term of Eq. (10) represents the 
diffusion due to frictional force between plasma and impurity ions which causes 
impurities to diffuse toward the center of the plasma [l]. It is difficult to estimate rate 
coefficients c+ and p, precisely. Here we employ the rough estimation given by 
Hinnov [8], the forms of which are abbreviated in the present paper. 

We have adopted the simplest form for r, ,oI~, and fllc in order to check the present 
method. However, if we intend to use the present method for the sake of the precise 
investigation of impurity behavior and its effect on a Tokamak plasma, we should 
consider a more precise and general form for particle flux [9] and the dielectronic 
recombination [IO] should be taken into account. Further, in general, we should 
solve the impurity diffusion equation (1) simultaneously with particle and energy 
balance equations for plasma ions and electrons when we investigate the one-dimen- 
sional behavior of impurities in a Tokamak plasma. However, for simplicity, we 
restrict ourselves to the case when plasma profiles remain constant in time throughout 
the computation. The extension to the general case can be easily achieved. 
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no,or mdim R= 109m 

m,nor radws a=oi4m 

toroido field F&=3.7 T 

plasma current J,=60 kA 

maxlrwm 

” = 10’9 m‘3 

Te= 1000 eV 

Ti=600 ev 

q =5544 

FIG. 1. Plasma distributions fixed throughout the computation. 

The time development of the profiles of oxygen impurties was followed by the 
method based on Eq. (4) assuming the constant plasma distributions shown in Fig. 1. 
Rate equations were solved as eigenvalue problems (the method is referred to in 
[l l]), and diffusion equations were solved by a Cranck-Nicholson scheme. For an 
initial condition, we have distributed neutral oxygen with density of 101’ m-3 uniformly 
over the space. Boundary values were chosen so as to keep the total impurity density 
constant inside the plasma; 

nkr dr = -a c r,(r = U) = 0. 
k 

(12) 

With this condition, steady-state distributions of impurities are easily obtained. To 
satisfy Eq. (12), we set .l’, = 0 for all k, for simplicity. These initial and boundary 
conditions have no physical basis, since, in reality, they are very complicated because 
of plasma-wall interactions such as recycling and sputtering phenomena. The total 
number density of impurities was checked for computational validity. Relative errors 
of Eq. (12) were below 1O-3 for dt = lOA set and space mesh points of 25. Figure 2 
shows the time development of the distributions of oxygen impurities. The steady- 
state solution was achieved after t = 3.75 x 10-l set in the present case. It is seen 
that impurities accumulate, as they are ionized successively toward the plasma center 
with time. 

Another method based on Eq. (9) was compared with that of Eq. (4) under the 
same conditions as in Fig. 2. A fairly good agreement was obtained: The two have 
given the same result to an accuracy of five figures when the number of spatial mesh 
points was 50. 

Finally, we have measured cpu-time for solving a rate equation once. The eigen- 
value method required about 25, 40, and 320 msec for carbon (K = 7), oxygen 
(K = 9), and iron (K = 27), respectively. The cpu-time of the Runge-Kutta method 
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FIG. 2. Time development of the densities of oxygen impurities. At initial time oxygen with 
density of 10” m-S is distributed uniformly over the space: (a) t = lo-* set, (b) t = low8 SBC, (c) t = 
0.1 set and (d) steady state. 

depends strongly on the time mesh interval chosen for the computation. Minimum 
values of the ionization characteristic time given by l/n,ar, over k’s, and electron 
temperatures are about 10-e set (for CI + CII, T, = 100 eV), 7.5 x lo-’ set (for 
01---f 011, T, = 100 eV), and 6.5 x lo-’ set (for Fe1 -+ FeII, T, = 70 eV), respec- 
tively, when n, = 10’Bm-3. If we choose a At of one quarter of the minimum charac- 
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teristic time for ionization, we obtain 130, 200, and 630 msec for carbon, oxygen, 
and iron, respectively, in order to solve the rate equation during 1O-4 sec. The fact 
should be emphasized that the minimum characteristic time becomes shorter as the 
plasma density increases, which significantly affects the choice of the time step required 
for the computation by the Runge-Kutta method. On the other hand, the eigenvalue 
method is completely free from the time mesh interval. 

The present computations were performed by the electronic computer FACOM 
230/75 at the data processing center in the Japan Atomic Energy Research Institute. 

4. CONCLUSION 

It is found that diffusion equations for impurity ions with source and sink terms 
due to ionization and recombination can be replaced by a succession of simpler ones. 
Solving rate equations and diffusion equations successively according to Eq. (4) 
or Eq. (9) gives approximate solutions of second-order accuracy in dt. It has been 
proposed that the rate equation should be treated as an eigenvalue problem to remove 
the very small time step determined by ionization process. In general, diffusion 
equations are nonlinear when impurity-impurity collisions are not ignored. Such a 
case requires some numerical technique such as linearization or iteration. The method 
of solving impurity diffusion equations described in the present paper will be useful 
to investigate the time development of impurities in a Tokamak plasma using a one- 
dimensional Tokamak transport code. 
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